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A Study of Renewal Processes with IMRL and DFR 

Interarrival Times 

Section 1. 

Introduction and Summary. 

A random variable X is said to have an IMRL (increasing mean 

residual life) distribution on [0,»)  if Pr(X < O) = 0, Pr(X > t) > 0 

for all t,     EX < »,  and E(x-t|x > t)  is increasing in t > 0. A 

random variable X is said to have a DFR (decreasing failure rate) 

distribution on  [0,«.) if Pr(X < 0) = 0, Pr(X > t) > 0 for all t, 

and the conditional distribution of X-t  given X > t is stochastically 

increasing in t > 0. 

Consider a renewal process with interarrival time distribution F.? 

an IMRL distribution on [0,°°).    Let M(t) be the expected number of 

renewals in [0^t]  including an initial renewal at time zero.  If 

Up = jZ    x dF(x) < oo define U(t) = t/u,+Up/2u • We show (theorem k) 

r°°      k+2  / \ 
that if u,_,n = J„ x  dF(xj < oo for an integer k > 0 then: 

(l) U(t) >M(t) > U(t) -   min   c.t"1 . 
0 < i < k 1 

In (l) c.  is an explicitly computed function of u , ..., \x.   ~, 

i = Oi...;k. Moreover the numbers v. = c.,_,/c.  are increasing and 

for v. n < t < v.,  c .t " =   min   c.t"1;  thus for te[v. , >v.] 
J-l-  - 3 J     0< i<k X  _. J_1 J 

the lower bound in (l) reduces to U(t)-c.t  . 

«,  a t 

We also show (theorem 5) that if t_(a )  = I      e  dF(t) < °o for 
bo o 

an a > 0 then for 0 < a < a : o — o 



(2)    U(t) >M(t) >u(t)-(eat-l)"1[(kL1a)"
1-(M2/2^)^F(a)_1)-

1] 

o 
where as before U(t) = t/u +Up/2u . 

The bounds (l) and (2) give intervals for M(t) whose lengths 

rapidly approach 0 as t -»°°. 

We also derive several monotonicity results for IMRL and DFR 

renewal processes (theorems 2 and 3). If F is IMRL then the expected 

forward recurrence time EZ(t)  is increasing in t as is MCtJ-t/V, 

and M(t+h)-M(t) > h/^ for all t > 0, h > 0. If F is DFR then 

A(t) (the renewal age at time t) and Z(t) are stochastically increasing 

in t> N(t+h)-K(t) is stochastically decreasing in t for all h > 0; 

M(t+h)-M(t)|h/|i-,  as t -> ooj M(t)  is concave and if F is absolutely 

continuous then the renewal density decreases to u,  as t -»<». 

Our results follow from a representation theorem (theorem l) for 

stationary IMRL renewal processes, and general delayed DFR renewal 

processes. This representation seems to be an ideal tool for the study 

of IMRL and DFR renewal processes. 

The theory of DFR distributions is developed in Barlow, Marshall and 

Proschan [5], Barlow and Marshall ([2],[3]), Barlow [l], and Barlow and 

Proschan [k].    IMRL processes are studied by Bryson and Siddiqui [6], and 

Haines and Singpurwalla [8]. 



Section 2, 

Definitions. 

A probability distribution F is said to be DFR on [0,°°)  if 

F(0~) = 0,     F(t) < 1 for all t,  and F(t+s)/F(t) is increasing 

in t > 0 for all s > 0 (F(X)=1-F(X)) .  By increasing (decreasing) 

we mean monotone non-decreasing (non-increasing). If F(0 ) = 0, 

F(t) < 1 for all t,     and F is absolutely continuous with pdf f, 

then F is DFR on  [O^oo)  if and only if there exists a version of 

£ for which h(x) = f(x)/F(x) is decreasing ([5]p.378)«  The function 

h is called the hazard function. 

If u, = /°° xdF(x) < °° then define G(x) = U"  / " F(y)dy. G 
x   0 x   0 

is the stationary forward recurrence time and renewal age distribution 

for a renewal process with interarrival time distribution F- A prob- 

ability distribution F is said to be IMRL on [0,oo) if F(0~) = 0, 

F(t) > 0 for all t,  p. < «>,  and E(X-t|x > t) = ^G(t)/F(t) is 

increasing in t. Since F(t)/u,G(t) Is the hazard function of the 

distribution G we see that F IMRL <=> G DFR. Also note that if 

F is DFR and u < <* then F is IMRL.  It is easy to construct 

examples for which F is IMRL but not DFR. 

Let X = 0,  and X,*Xp,... be i.i.d. with distribution F. Define 
n 

S0 = 0,  S -EX.,  n=l,2,..., N(t) = (#S. < t] = min(i:Si > t},  and 

M(t) = EN(t).  Define F(t) = l-F(t), q - F(0), U = /°° xkdF(x) 

2        N(t) ° 
L(t) = M(t)-t/u-,-Up/2u , Z(t) = L   X.-t (the forward recurrence time 

N(t)-1 
at t) and A(t) = t- E   X.  (the renewal age at t). The process 

1    X 



(w(t)^ t > O)  is called an ordinary F renewal process. If X',X', .. 

are independent,  Pr(X' > t) = / (F(t+y)/F(y))dH(y) where H is a 
u n 

probability distribution on [0}«>),    X'. ~ F for j > 2,  S* = £ X'., 

N'(t) = (#3*. < t} = maxti: S*. < t}, then  (N'(t), t > 0}   is called 

a delayed F renewal process with initial age distribution H. For a 

delayed F renewal process Z'(t), Z'(t), N'(t), M'(t), x'!, S'.  will 

denote the anologues of Z(t), A(t), N(t), M(t), X±,  S.. A delayed F 

renewal process with initial age distribution G(x) = u,  /_ F(y)dy 

is called a stationary F renewal process. A stationary F renewal 

process satisfies EW'(t) = t/u,  and Z'(t) ~ A'(t) ~ G for all 

t > 0. 



Section 3« 

Representations. 

We will either assume F IMRL on  [0,oo) or DPR on [0,°°). We 

will construct two dependent renewal processes. Process 1 will be an 

ordinary P renewal process.  Process 2 will be a stationary F renewal 

process in the IMRL case, and delayed F renewal process with arbitrary 

initial age distribution in the DFR case. The special feature of process 

2, under this construction, is that S,,,. , - S'., i=l,2,...  for a random N+i-1   x 

integer N (the distribution of N will depend on the initial age 

distribution).  Processes 1 and 2 differ only in that process 2 has zero 

renewals in [0,S„) while process 1 has N renewals in this interval. 

The simple nature of this difference is exploited to obtain our results. 

The construction is based on a simple idea which is obscured by the 

details of the construction and proof. We decompose the hazard into 2 

components,the first component causing failure for both processes, the 

second component only causing failure for process 2. The construction 

uses the following lemma: 

Lemma 1. Let X be distributed as F where F will either be 

assumed IMRL on [0,oo)     or DFR on [0,«>). Set K(t) = G(t)  in 

the IMRL case and K(t) = / (F(t+y)/F(y))dH(y),  where H is an arbitrary 
0 

probability distribution on [0,°°),  in the DFR case. Define K (t) = K(t+v)/K(v), 

J (t) = F(t)/K (t). Then J  is the survival function of a perhaps 

defective distribution on [0,°°). 

Proof. In the IMRL case  Jv(t) = (F(t)/G(t))(G(t)/G(t+v))G(v),  and since 

G is DFR both F(t)/G(t)  and G(t)/G(t+v)  are decreasing. Thus J 

c 



- - 00     - _ _ "I -1 
is decreasing. In the DFR case J (t) = K(v)[/ (F(t+v+y)/?<t))(F(y)) dH(y):]  . 

v 0 
Since F is DFR the denominator is increasing, and then since the 

numerator is constant, J   is decreasing. Thus in both cases J 

is decreasing. In addition J  is right continuous,equals 1 for 

t < 0 and is always between 0 and 1. It is thus the survival 

function of a perhaps defective distribution on [0,»). || 

We proceed with the construction. Again K(t) = G(t) when 

F is assumed IMRL ,      and K(t) = /°° (F(t+y)/F(y))dH(y) with H 
0 

an arbitrary probability distribution on [0,oo),  when F is assumed DFR. 

Construct Z,  and W,  independent with Z ~ K, W ~ J where 

J(t) = F(t)/K(t). If Z, < W,  set X, = XI = Zn  and X. = X'. = Y. ., 
'        l-i     l  l  l     j       j  j-r 

3=2,3, •••    where {Y.,i > l)  is an i.i.d. sequence with distribution 

F independent of (Z,,W ). If Z, > W ,  set X-, = W,  and go to stage 

2. At stage 2 construct Zp and W  conditionally independent of each 

other and of (Z..,W )  given W1,  with Zp|W, = v having distribution 

K (t) = K(t+v)/K(v),  and W |wi = v distribution Jy(t) = F(t)/ic (t). 

If Z0 < W„ then set X0 = Z_, XI = Wn+Z„  and X. = X'. , = Y, „, 2—2 2   2'       112       j   j-1   j-2 

3=3,h,... where {Y.,±=1,2,...}     is i.i.d. with distribution F and 

independent of (Z , W,, Z  , W  ).    If W~ < Z2 set X£ = W£ and go to 

stage 3« We reach stage m if and only if W. < Z.,   i=l, ...,m-l,  in 

which case X. = W.> i=l,...,m-l. At stage m we construct Z  and 
li m 

W  conditionally independent of each other and of (Z-, ,W,) • • *(Z , ,W ..) 
m-1 m-1 m-1 

given      Z    W.,     with    (Z  |     E W.   = v) ~ K ,   (W |     Z W.   = v) ~ J  • & I        i v   m1      2_    x v m1      -,     l v 

m-1 
If    Z    < W      set    X    = Z  , X»  =    Z    W.+Z , X.  = X'.     _,-,   = Y.     ,   j=m+l, ... 

m —    m m        ml -,       l    m      j j-m+1 j-m    ° 

where     (Y.,i > 1}     is  i.i.d. with distribution    F    and independent of 



(Z-, ,W, ,Z   .W„, . ..,Z    -,,W    . ).     If    Z    >W      we  go to  stage    m+1    and. 
1'   1    2    2' m-1    m-1' m        m & & 

repeat. 

Theorem 1. Under the above construction: 

(i) {X.,1=1,2, ...}     are i.i.d. with distribution F. 

(ii)  (X'.;i > l)  are Independent, X' ~ K, X'. ~ F for j=2,3» 

(iii) X'. = X„.. ,  for i=l,2, ••• where N = min{i: Z. < W. } x   '   l   N+i-1 l—i 

and Pr(W < <») = 1. 

Proof, (i) Define N = minli: Z. < W.), N = «, if W. < Z.  for all 
  l — l ii 

i. Now (X | N > i, (¥ ,Z  ) = (w ,z ), j=l,...,i-l) ~ min(Z* W*) 
-^- cj   J 0    J V    V 

•X- -X-       • -Sf "X" where v = Z v ,  Z    ~ K , W ~J  and Z  and W  are independent. ]_   J   V    V   V    V        v        v r  ' 

Since K (t)j (t) = F(t), (X |w > i, (W ,Z   ) = (w ,z ) j=l,...,i-l) ~ F. 
V      V 1 J   J 0 0 

Moreover (X. N=j < i) ~ Y. . ~ F. Thus X. ~ F independent of 
i I-J l 

X~, • • >,X.   ., • Since this holds for all i, iX.,j  > l}  is i.i.d. with 

distribution F. 

(ii) In our construction we generated W-, •.. .•¥.... It will now be 
1     JM 

convenient to continue constructing W.!s for j >N. At stage j 
J 

construct W.  to be conditionally independent of W ,...,W. ,  given 

d -1 j —i co 
Z¥.,  with (W.  Z W.=v) ~ J • We know that Pr(E W.=<») = 1 because 
1 i J  1  i      v \    i 

K is DFR,  so inf Pr(W. > t) > inf Pr(W > t) = F(t)/lim K (t) > 0. 
i v v->o° 

Thus,   given    t.,   for  almost  all    {W.=w.,   i=l,2,...}     we can find    j     so 

j-l j 
that       Z w.  < t < Z "w. •     Then 

!     l - i     i 

Pr(X^_ > t|w1,w2, ...)  =  (  n    K (w^)) K    1    (t- Z w±)  = K(t)   . 
£=1    z w, r. w. 

l   * l   x 

Thus    X^ ~ K. 



(iii) Since X' ~H.  and process 1 can have only finitely many 

/als in a finite 

that Pr(W < oo) = 1. 

renewals in a finite time interval, and since Pr(X' <<*>) = !,     it follows 



Section k. 

Some properties of IMRL and DFR renewal processes. 

Theorems 2 and 3 below present several properties of IMRL and DFR 

renewal processes.  Theorem 2 is extensively used in section 5 to obtain 

our bound for M(t). 

We will need a simple result which is well known, but for which we 

have no reference. 

Lemma 2.  Let F be a distribution on  [O.,»).  If u, < °o define 

F-,(t) = /C°F(x)dx; if LU < °° define F0(t) = /°°F1(x)dx. Then: 1      t <~2 2      t  1 

(i)  u, < oo =s> t JF( t) -> 0 as t ~> co-}     for k > 0,   u  < °° 

=£>   /°°   tkF(t)dt = |^_ /k+1 < oo    and    t1^ (t) -> 0    as    t -* »;     for 

k > °'   l\+2 
<    " =>  /"t^-t)^ =  M^g/U+lXk+2) < ra    and 

t^2(t) ->0    as    t ->oo;    for    k > 0,   ^      < °o => /"t^ttjdt = 

^+3/(k+l)(k+2)(k+3)  < oo. 

(ii)    For    a > 0,   tja) = /°°eatdF(t) < »    implies    e&tF(t), 
F      0 

e F,(t)  and e Fp(t)  converge to 0 as t ->°°. Moreover 

/0°° eatF(t)dt = a_1(tF(a)-l) < », /~ e
atF1(t)dt = a"

2( i|rp( aj-a^-l) < », 

and /" eatF2(t)dt = a"
3( y a)-a2( ^J-a^-l) < <*>• 

Proof.  The equalities between integrals follow from interchanging the 

order of integration. The convergence to zero follows from the equality 

between the integrals in each pair and integration by parts.  || 

Theorem 2. Consider an ordinary F renewal process with F IMRL. Then: 

(i) M(t)-t/V  and EZ(t)  are increasing in t > 0}  M(t+h)-M(t) > h/|i. 



for all    t > 0.,     h > 0 and converges to    h/|i     as    t -> <»}     if    p.   < °° 

then    L(t)  = M(tJ-t/p^p^p^ f 0    as    t ->». 

(ii)  If     p._ < »    then    0 > L(t) > -^     /    (G(x)-q T,(x))<3x 
d x      t 

>      "I     °°   _ 
-    ^1    /t    G(x)dx,     where     q_ = F(o). 

,  < (iii)    For    k > 0,   ^      < » $> lim  t l(t)=0 and    p^, 

=>   0 > /°° t    L(t)dt > -oo j  For    a > 0,     i|r (a) = /    e& dF(t) < » 
"0 . ° 

=> lim    eatL(t) = 0    and    0 > /°° eatL(t)dt > -oo   . 
t-X» 0 

(iv)    If    u~< oo    and    h    is measurable.,  bounded,   and    lim h(t) = 0 
t-»oo 

then lim [Jt hCt-xJdMCxj-u"1 /* h(x)dx] = 0. 
t->«  ° l      ° 

Proof• Recall that process 1 is an ordinary F renewal process, 

process 2 a stationary F renewal process,  and S'. = S„, . -.>  i=l,... . 

Note that by Wald's identity EN = pp/2p-,  whether or not  Up is 

finite. 

(i) MCtJ-t/^ = E(N(t)-N'(t)). Since H(t)-B'(t) f N 

M(t)-t/p_ | EN = \x0/2.]± ,     by the monotone convergence theorem. Thus 

if n0 < oo then 0 > L(t) | 0 as t -»<». Since Z(t) = E X.-t it 
1  1 

follows from Wald's identity that EZ(t) = p1(M(t)-t/^),  thus EZ(t)f . 

Since MCt+hJ-MttJ-h/i^ = (M(t+h)-(t+h)/p1)~(M(t)-t/u;L) and M(x)-x/u 

is increasing, M(t+h)-M(t) > h/u,• The convergence of M(t+h)-M(t) 

to h/u,  can be proved di.rectly from the construction, but we will simply 

appeal to Blackwell's theorem noting that if F is a lattice distribution 

with period d> then E(X-üC/2|X > ^/2) = E(X-q/2|x > 0) 

= E(x|x > 0)-ü)J2 < E(x|x > 0)  so F is not IMRL-. 

10 



(ii) By the argument in (i) L(t) = [i-, T](z(t)-Z' (t)) .  By construct ion 

0 > Z(t)-Z'(t) 

( 0    if    t > X^ 

Z(t)-(X^-t)  if t < X^     . 

Thus     u^t) = G(t) E(Z(t)|x^ > t)   -  r G(x)dx.     Since    Z(t)|x^ > t 

is  a mixture of distributions  of the form   X-vjX > v    where    X ~ F 

which is IMRL,     E(z(t)|x^ > t) > E(x|x > O) =  q"1^-     Thus 

0 > L(t) > -m"1 /°° (G(x)-q"1F(x))dx > pT1 /°°G(x)dx   . 
~ ~      L      t x      t 

(iii) These results follow from the inequality 0 > L(t) > -JJ.  / G(x)dx 

aid lemma 2. 

(iv)    Consider    Jt   h(t-x)dM(x)-)j."1 /t   h(x)dx = /°° h(t-x)l(x < t). 
0 ' X      ° 0 

f X    if    x < t 
d(M(x)-x/V ),    where    l(x < t)      I 

I 0    if    x > t 

By assumption the integrand converges to zero. By part (i) of this 

theorem M(x)-x/u-, T Mo/2!-1-]  as x ~* °°.>  thus if [i    < <» M(x)-x/|_u 

2  -1 
has total finite variation on [O,«») equal to  i_u/2|^-q  . Thus 

h(t-x)l(x < t)  is dominated by sup|h(s)|,  and /_ | sup h(s) | d(M(x)-x/|x, ) 

2  ~1 S S 

= (sup|h(s) I )(jj. /2|j,-q ) < oo. The result follows from the dominated 
s        ^ 

convergence theorem.  || 

Theorem 3.  Let F be DFR on [0,•).    Then; 

(i) A(t)  and Z(t)  are stochastically increasing in t. 

(ii) N(t+h)-N(t)  is stochastically decreasing in t and 

M(t+h)-M(t) X  h/n  as t ->°°. 

(iii) M(t)  is concave. 

11 



(iv) If F is absolutely continuous then m(t)yu,  as t -»<*>, 

where m is the renewal density function. 

Proof,  (i) Give process 2 initial age distribution H = F,  where F. 

is the age distribution of process 1 at time s. Then since A'(t) > A(t) 

and Z'(t) > Z(t) for all t by construction,  Pr(A(t+s) > a = Pr(A'(t) > a) 

> Pr(A(t) > a) and similarly for Z(t). 

h 
(ii) Pr(w(t+h)-W(t) > k) = /   dF^Jx) -Pr(w(h-x) > k). Since 

Z(t)  is stochastically increasing and Pr(N(h~x) > k)  is decreasing in 

x,  Pr(N(t+h)-W(t) > k)  is decreasing in t. Since N(t+h)-W(t) is 

stochastically decreasing, M(t+h)-M(t) is decreasing. 

(iii) We want to show that for 0 < x < y,  0 < Q < 1, 

M(Ox+(l-a)y) > a M(x)+(l-a)M(y),  equivalently that r(x,(l-o)(y-x)) 

> r(x+(l-a)(y-x), a(y-x)) where r(t,s) = (M(t+s)-M(t))/s. Since M 

is right continuous  (M is actually continuous) it will suffice to show 

that r(t ,k /n) > r(t ,k /n) for all n,  0 < t < t + k /n < t . 

consider the case 0 < k < kp,  the case k_ > k > 0 follows similarly. 

By part (i) of this theorem r(tp,k,/n) < r(t ,k /n)  and 

rU^k^/n^-k^/n) < rCtg+k^l/n) < r(t1+(k1-l)/n,l/n) < rCt^k^n), 

thus r(t2,kp/n) = (k1/k2)r(t2,k1/n)+[ (kg-k-^/kgMtp+kj/n, (kg-k^/n) 

< (k1/k2)r(t1,k/n)+((k2-k1)/k2)r(t1,k/n) = rU^k/n). 

(iv) Let h(x) = f(x)/F(x) the decreasing hazard function. Now 

m(t) = Eh(A,) with h^ and A(t)  stochastically increasing. Thus 

m(t) is decreasing and therefore has a limit;   by the elementary renewal 

theorem this limit must b© u.-, • 

12 



Section 5» 

Bounds for M(t). 

Theorem. If F is IMRL on  [0,»)  and M.v+P ^ °° f°r an integer k > 0 

then: 

(3) U(t) >M(t) > U(t) -  min  c.t"1 

0<i<k X 

2 2  -1 
where U(t) = t/[x^+^/2^,   CQ = ^/2^-q ,  and 

0 < c. = -1 /°° s1" L(s)ds = / s1d(M(s)-s/|i-l ) > -« for i=l, ...,k 
~ i      0 0 . x 

The term c.  is a function of  u  • • • V-+r>)   i=l>...>k which can be 

recursively computed from: 

1      i~1 

(k) c±=    7±-^ i-     Z    (c /s'.)X,i+       ,   i=l, ...,k 
s=l 

where    7± =  [ [i±+2/( 1+1)(i+2)^]- [ 1^^^/2(1+1)^] 

X..   =  ii./il 

Equation (4) can be explicitly solved yielding: 

j=i     i=i    (v-'V^i-^i 1  r 

i 
where Ak ^ = {(i, ...,ig): i^ > 1, r=l,...,i, J ir=k) . 

•Proof.     Since    M(t) - U(t)  + L(t)     and    L(t) < 0  (theorem 2,   (l)), 

(5) 

M(t) < U(t).  Since L(t)  is increasing (theorem 2,(i)), 

> ut+.)-t    . 
'0 

L(t) > L(0) = M(0)-M.2/2^ = q"
1-^^ = -cQ.     Thus M(t) > U(t)-c( 

13 



Since L(t)  is increasing it is at least as big as its average over  [0,t] 

with respect to any probability measure on [0,t].  Thus L(t)>it  / s  L(s)ds 

~"i  r00  i"'1 /  \ 
which since L < 0 exceeds it   I     s  LlsJds = -c. > °° by theorem 2 

0 i 
-i     °°   i-1 part  (iii). The  equivalence between    -it       /    s       L(s)ds    and 

0 
/ s d(M(s)-s/|jn )  follows by integration by parts and part (iv) of 
0 . 1 

theorem 2. 

To identify the c.'s,  start with the identity M(t) = 1 + / M(t-x)dF(x), 

subtract U(t)  from both sides,, multiply both sides by t  and use the 

identity t -(t-x) = £ ( )(t-x) x  •  This yields: 
r=0 r 

(6) t^t) - /* (t-x)1L(t-x)dF(x) + h(t) 
0 

4-  i-1  •     r  • 
where h(t) = h,(t)+hp(t)-h (t), h (t) = /  t Z C)(t-x) x1"1"] • 

1    d 5 l     o  r=0 r 

L(t-x)dF(x), h2(t) = t
1^1 /  P(x)dx, h3(t) = t

1(u2/2u1)F(t) . 

Wow (6) is the renewal equation g = h+g*F = h*M,,  with g(t) = t L(t). 

By part (iv) of theorem 2,  if we can show that h(t) is bounded;, 

integrable and that lim h(t) = 0.,  then we can conclude that 
t -* po 

lim tXL(t) =  la"1 /°°   h(t)dt.    But for    i=l, ...,&,     lim t1L(t) = 0 
t —> oo 0 •£ _»00 

by part (iii) of theorem 2. Thus the conclusion will reduce to 

00 

L   h(t)dt = 0., which will provide us with a useful identity. 

To show that h is bounded;, integrable and convergent to zero, we 

do so separately for each h..  By lemma 2,     hp and h,  are convergent 

to zero and integrable with: 

lk 



(7) Im  k2(t)at = ia.+2/(i+i)(i+2)|^ 

(8) /°°h3(t)dt = ^.+1^2/2(i+i)^ 

The boundedness of h_. and h  follows from the boundedness on 

finite intervals and the convergence to 0 as t -><». 

Defining L(y) = 0 for y < 0 we write 
00 i-1 

h,(t)•= / ( S (^)x1"r((t-x)rL(t~x)))dF(x). Since (t-x)rL(t-x) -> 0 
X      o r=o 

r 

as t -»co by part (iii) of theorem 2,  the integrand converges point- 

wise to 0. Moreover, since s |L(S)|  is bounded on finite intervals 

and converges to 0,  sup s |L(e)| < <», thus the integrand is dominated 

by the integrable function  Y ( )(sup s |L(S)|)X   .  Thus by the 
v^O    r  s 

dominated convergence theorem h,(t) -» 0 .  The above argument also shows 
i-1  . 

that |h, (t)| < J ( )[i.     (sup s |L(S)|) < °°,     thus h,  is bounded, h 
" r=0 r 1_r s oo 

is integrable by part (iii) of theorem 2 since /  |h(t)|dt = 

i-1 ° 
S ( )u.   / s L(S) ds < oo . Moreover: 
r=0 r/hi-r o 

QQ l       ""_L W l 

(9) /     Mt) at =   X   (X)^-      /    srL(s)ds = -i*.    Xtc/rOx.^ 
*   ' n      1 ^    r *i-r    n •/  r' i+1-r u r_Q u r=i 

CO °° n00 

The identity / h(t)dt = 0 is equivalent to  - /_ h,(t)dt = / b_(t)at - 

/°° h,(t)dt. Using (7), (8), and (9) this gives us il S (cJrl)\. ,, =m7. which 
Q  j) T—i       i~f"-L—r x x 

reduces to (4). 
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Define dQ = 0, d± = c„./il, i=l,...,k,  5Q = 0, 6. = y./l\, 

i=l, ...,k, ß_ = 0, ß. = u_ ^.+-|j  i=lj...,k. Then rewrite (4-) as: 

(10) d. = 6. - f  d ß. 
s=0 

i 
(lO)  is  a discrete renewal equation.    Its  solution is    d.   =    £ 5 .M.    . 

(s) (s) J 

where M. = £ ß.  ,  where ß^   is the s-th convolution of ß. Since 
X/ vS=0 x i i-l 

ß^ = 0, ß^S' = 0 for s > i. We thus obtain d. = X &-M. . = 6. + 2 s-M. . 
0      l l  ,£.  j l-j   l   f  j i-j 

i-l £ J J 

= B. + J! 8 £    ( | j ß. ), which is equivalent to (5). || 
j^l "(!,...,ii)6A,_J1 „ 1  -"r 

Then v.  is increasing and for v. -, < t < v.,  c.t J =•    inf  c.t 

At first glance it may seem that we need to compute c.t   for 

several i in order to compute inf c.t  . Fortunately this is not 
i 

the case. 

Lemma 3 • Assume that F is IMRL on [0,oo).  Then either F is quasi- 

exponential (F(t) = qe J,  0 < q < 1, X > 0,  t > 0) in which case 

c. = 0 or F is not quasi-exponential in which case c. > 0 for all i. 

Define v_, = 1, v. = C
-,-]/

C
-J   i=0>l>2,... ,     with o/o = 0, <x>/m  = oo . 

. , < t < v., c.t"J =•    inf 
j-i -  - j  j     1=0,1, ...  1 

Froof. If  Up = co then J  d(M(t)-t/|x, ) = °° ,     so c. = «=, i=0,l,... . 

If Up < co then by theorem 2 part (ii) L(t) is the distribution function 

of a positive measure. Thus c. = 0 if and only if L is a constant. Since 

lim L(t) = 0,  that constant must be 0» Let Z'(t) denote the forward 
t -> 00 

recurrence time of the stationary process at time t.  By our construction 

Z'(t) > Z(t) with equality for all t with probability one iff 

X^ ~ x|x > 0.  Since L(t) = uT1E(Z(t )-Z' (t)) we see that 

c. = 0 <=5> G(t) = q_:iF(t) <=5> h*(t) = qu"1 where h* is the hazard 
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function for the distribution G.  But,, under this last condition 
_      -qu^t      __       -qu71t 
G(t) = e     ,     so F(t) = qe  1    ,     thus F is quasi-exponential. 

2 
Next consider the Hubert space L [[0,<x>),ß,L] where ß is 

the collection of Borel sets on [0,co).  Recall again that L is 

the distribution function of a positive measure. Now 

c2 =   (t(j+l)/2     (j-l)/2j  <     ||t(j+l)/2||2   ||t(d-l)/2||2 
J 

J-l  J+l 

by Schwartz's inequality.    Note that the inequality trivially holds 

in the quasi-exponential case.,   and also holds  in the alternative 

case since    c        > 0    and    c.  = co => c        = oo.     The inequality is 
J-l J J+l J 

equivalent to    v. in   = c. ,./c. > c./c        = v.     (again    olo = 0. 
j+1        3+1    J -    J     J-l        J 

oo|oo = co).     Thus the    v. ' s    are increasing. 

We next show that    t < v.     implies     c.t"g < c      t"^+m')    for 
-    3 3 J+m 

-i -k m=l,2,...   .     Thus  for    t < v.,   c.t d    is better to use than    et 

with    k > j.     A similar argument which we delete shows that 

-i -k t > v.  ,     implies     c.t      <  at for    k < j.     Together they show 
—    j-l 3        —    k ° 

— 1 r T that     c.t        is optimal in    [v.  , .v.J.     Suppose that    t < v.    and 
3 J-l    J -    J 

m > 1.     Then    c.t"J < c.r  t~^J     '    if and only if 
J        -    J+m 

m-1 
tm < c. ,   /c.  = T\    v.       . 

~    J+m    j        IJ0    J-HL 

Since t < v. and each of the m terms of the product are equal to 
J 

or greater than    v.     (since     v. T)    it follows  that 
J J 

m-1 

iJo  J+1 
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Remark.  The above proof shows that if we only consider c ....,c , 
  "Ok 

where k is finite then c. t  =   min   c.t   for all t > v. ,. 
k ,.,... n     l —    k-1 

ü < l < k , -     - aQt 
Theorem 5.     If    F    is     IMRL on    [0,oo)     and    t-r,(an)  = /• e       dF(t) < oo 

for an    a0 > 0_j     then for    0 < a < a0: 

(11)        U(t) > M(t) > U(t)-(eat-l)     [ (n1a)"1~(^2/2^)^(tF(a)-l)-1 

Proof. The proof is very similar to that of theorem k. Choose 

ae(0,a„]. Using L(t) < 0, L(t)t as in the proof of theorem 3 

we obtain: 

(12)    U(t) > M(t) >U(t) + a(eat-l)"1 /£ e
aSL(s)ds 

00   at where    0 > /    e    L(t)dt > -co    by part   (iii)  of theorem 2. 

CO   QP 
To evaluate \|rT(a) = / e L(s)ds we start with 

M(t) = 1 + / M(t-x)dF(x),  subtract U(t) from each side and 
0 

at 
multiply both sides by e .  This gives: 

(13) eatL(t) = f  ea(t"x)L(t-x)dF(x) + I (t) 

where 

(t) = l:L{t)H2{t)-^{t)i  ^(t) = /
t(eax-l)ea(t-x)L(t-x)dF(x), 

i2(t) = uf e
at f F(x)dx; i3(t) = .(u^/2^)e

at
F(t) 
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We verify the conditions of part (iv) of theorem 2 in a similar 

manner as in the proof of theorem 3* making heavy use of lemma 2 

and part (iii) of theorem 2.  The conclusion of part (iv) of 

at 
theorem 2,   in light of  lim e L(t) = 0  (part (iii) of theorem 2 

t -> 00 

becomes: 

(Ik)       (tF(a)-l)tL(a)=(u2/2n^)[(^F(a)-l)/a]-(u1a
2)  (^(aj-^a-l) . 

Since    \|/v,(a)-l ^ 0    for    a ^ 0    we can divide both sides of 

(ik) by    ^(aj-l    and solve for    i|r  (a).     This gives: 

(15) tL(a)  = n2/2u^-(uia
2)     +[a(tF(a)-l)]"1 . 

Substituting (15) into (12) gives us (ll).  || 

Remark.  (ll) and (15) will hold for a < 0 whether or not 

\(r (a) < oo for an a > 0.  If u, < oo and we let a y 0 in (ll) 
a J 

then we obtain M(t) > U(t)-c t"  where c.  is given in (h).     In 

(k) 
general M-k+^ < °° implies f       (0~) exists and equals 

—1 
-(k+l)~ c  .  Thus tT(a) can be considered a generating function 

for the e.'s. However unless the particular form of ^-(a) leads 

to a simple expression for \|r (a),  expressions (k)  and (5) of 

theorem 3 will be preferable for computing the c.'s. 
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Section 6. 

Improved bounds when F is DFR. 

The bounds given in theorem k,  corollary 3}   and theorem 5 for 

IMRL distributions can be improved for DFR distributions.  Define 

OL = 1, a. = (i/i+l)1.  i > 1,  cf = a. c.  where  c.  is given in 

theorem 3,  and  v? = c* /c* = (a.  /a. )v..  Also define 
'      l   l+l l    l+l l l 

g (t) = a(e -1)~ / se ds = (te /e -l)-a ,     and \|r(a) = -ai|r (a) 
a o i» 

[(u1a)"
1-(M.2/2^)-(tF(a)-l)"

1]. 

Corollary ji.     Assume that    F    is    DFR    on    [0,oo).     Then: 

(i)     If    u. < co    then    U(t) > M(t) > U(t) -   min        c*t_:L 

0<i<k    X 

(ii)     v* f    and for    v? .   < t < vl",   c*t"^ = inf c*t-1   ; 
i J-1 -      -    J      J j_      i * 

thus for    v* .  < t < v*    the bound in  (i)  is given by    U(t)-c*t    . 

(iii)    If    \|f_(a„) < co    for an    a„ > 0    then for    0 < a < a^: TF    0 0 —    0 

a«"  (t)       -1 .   ,       -1 
U(t) > M(t) > U(t)-(e    a        -1)    T)r(a) > U(t>-(eat +1-l)    i|r(a). 

Proof.  (i)  L is concave by theorem 3 part (iv).  Thus 

t    • i •  t  * i 
L(jt*J ;0 s-s^ds) = L((j/j+l)t) > jt"

3  /0 s°"
±L(s)ds 

> jt J /n sJ  L(s)ds = -c.t J.  Thus  L(t) > -c.[(j+l/j)t] J 

= c.t     .     The  argument now proceeds  as in theorem 3. 
J 

(ii) A simple differentiation argument shows that a.+-,/a.T • 

Since vi+1/viT by corollary 3 and ^+1/
vi = (ai+1/

a
i)(

v
1+1/

v
i) 

we see that v* n/vf   |. 
l +1 l 
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The argument now proceeds as in corollary 3« 

(iii) The concavity argument in (i) shows that L(g^(t), 

at , v-1 rt asT / x, ^  / at n \-l, 
a      ag-1^)      -1 

> aCe3,0-!)"" /" eaöL(s)ds >   -(ea,,-l)'^(a)    thus    L(t) >-(e    a        -l)    t(a). 0 

Since    g   (t) > t-a        and both are increasing    g    (t) > t+a    ,     thus 

/ ^a -. \-l, f   \ ^     t at+1 n v-1. /   v       II -(e -1)    \|f(a) > -(e -1)    i|r(a).     || 

Example.  f(x) = (r(l/2) )"1x"1'2e"X, x > 0; this is the r(l/2,l)= X?/2 

distribution which is DFR ([5LP- 378).  The moment bounds given in 

theorem 3 and corollary 4 for IMRL distributions apply, as well as the 

improved moment bounds for DFE distributions given in corollary 4. 

Using our recursive formula (4) we compute c~ = 1/2, c^ = c  = l/8, 

a    = 15/64, cif = 21/32, c = 315/128, c6 = 1485/128.  Next 

1 = 0, v0 = 1/4, V;L = 1, v2 = 15/8, v3 = 14/5, v^ = 15/4, v5 = 33/7. V 

Denoting the lower bound given in theorem 4    by    B(t)  = U(t)-    min      c.t" 
0<i<6    x 

we obtain: 

2t+l,  0 < t < 1/4 

2t+3/2-(8t)~1,   1/4 < t < 1 

2t+3/2-(8t2)"1,  1 < t < 15/8 
B(t)  =/ ~      " 

2t+3/2-(15/64^), 15/8 < t < 14/5 

2t+3/2-(2l/32t ), 14/5 < t < 15/4 

2t+3/2-(315/l28t5), 15/4 < t < 33/7 

^_2t+3/2-(llf-85/l28t ), 33/7 < t < GO 

The lower bound given in corollary 4 which we denote by 

B*(t) = U(t) ~  min  c*t~ , can be similarly written. 
0<i<6 X 
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The table below gives a few values of t along with the corres- 

ponding intervals  [B(t),U(t)] and [B*(t),U(t)]  for M(t). 

t (B(t),U(t)) (B*(t),U(t)) 

.1 [1.2,1-71 [1.2,1.7] 

.5 ' [2.25,2.5] [2.375,2.5] 

1 [3 .375,3.5] [3.444,3-5] 

1.5 [k..kkk,k.5] [4.475,4.5] 

2 [5.^71,5.5] [5-488,5-5] 

3 [7.i+92,7.5] [7.497,7.5] 

4 [9.^976,9.5] [9.4990,9.5] 

5 [H.49926,11.5] [11.49971,11.5] 
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